
Practical PgBouncer 
Pain Prevention

Nick Meyer @ Academia.edu
PGConf NYC 2025



Practical PgBouncer 
Pain Prevention

Nick Meyer @ Academia.edu
PGConf NYC 2025



postgres problems:

“common cold”

pgbouncer problems:

?



A bit about me (Nick Meyer)

● Team lead of Platform Engineering
● @ Academia.edu
● https://github.com/aristocrates

https://www.academia.edu/
https://github.com/aristocrates


Slides: 
https://github.com/aristocrates/pgconf_nyc_2025_talks

https://github.com/aristocrates/pgconf_nyc_2025_talks


Objectives

PgBouncer:

1. Configuration
2. Monitoring
3. Scaling (“multi-bouncer”)

Slides: https://github.com/aristocrates/pgconf_nyc_2025_talks

https://github.com/aristocrates/pgconf_nyc_2025_talks


Out of scope

● PgBouncer alternatives
● TLS/authentication
● Medical advice

Slides: https://github.com/aristocrates/pgconf_nyc_2025_talks

https://github.com/aristocrates/pgconf_nyc_2025_talks


Part 1
Configuration



Problem: too many connections

● Tons of clients
● Tons of connections
● Connections mostly idle
● Postgres connection = process = $$$$



Solution: PgBouncer

● “Connection pooler”

idle

idle

idle

active Postgres

5432

6432



pool_mode

● Session
● Transaction
● Statement

BEGIN;

UPDATE users
SET name = ‘Nick’
WHERE id = 1;

UPDATE user_countries
SET country = ‘US’
WHERE user_id = 1;

COMMIT;

CREATE INDEX CONCURRENTLY 
[...]

SELECT name
FROM users
WHERE id = 1;



pool_mode

● Session
● Transaction
● Statement

BEGIN;

UPDATE users
SET name = ‘Nick’
WHERE id = 1;

UPDATE user_countries
SET country = ‘US’
WHERE user_id = 1;

COMMIT;

CREATE INDEX CONCURRENTLY 
[...]

SELECT name
FROM users
WHERE id = 1;



pool_mode

● Session
● Transaction
● Statement

BEGIN;

UPDATE users
SET name = ‘Nick’
WHERE id = 1;

UPDATE user_countries
SET country = ‘US’
WHERE user_id = 1;

COMMIT;

CREATE INDEX CONCURRENTLY 
[...]

SELECT name
FROM users
WHERE id = 1;



pool_mode

● Session
● Transaction
● Statement

BEGIN;

UPDATE users
SET name = ‘Nick’
WHERE id = 1;

UPDATE user_countries
SET country = ‘US’
WHERE user_id = 1;

COMMIT;

CREATE INDEX CONCURRENTLY 
[...]

SELECT name
FROM users
WHERE id = 1;

X

X



pgbouncer.ini - databases section

/etc/pgbouncer/pgbouncer.ini

[databases]
db = host=A port=B dbname=C pool_size=N

Many other params including:

● pool_mode
● user



Server connections

● pool_size
○ per (database, user)

● sum(pool_sizes) < max_connections

pgbouncer
Postgres

db1, u1: pool size 1

db1, u2: pool size 1

db2, u1: pool size 2



Client connections

● max_client_conn
● limitNOFILE
● /etc/security/limits.conf

pgbouncer
Application



Academia.edu uses multiple “databases”

[databases]

app    = host= port= dbname=db pool_size=A

worker = host= port= dbname=db pool_size=B

app worker
HTTP request enqueue

enqueue

response



Academia.edu uses multiple “databases”

● Separate “app” and “worker” with different pool sizes

“db”: worker

“db”: app

Postgres

app

worker

db: app

port: 6432

db: worker

port: 6432



Client connections (multiple workloads)

● max_db_client_connections (1.24.0+)
● max_user_client_connections (1.24.0+)

pgbouncer
worker

app ��



Transaction mode: unsupported features

● Some statements are not supported
● Others can cause problems if they leak
● https://www.pgbouncer.org/features.html
● pgbouncer will not detect this

https://www.pgbouncer.org/features.html


Transaction mode: unsupported features

SET/RESET Never

LISTEN Never

WITH HOLD CURSOR Never

PREPARE / DEALLOCATE Never

PRESERVE/DELETE ROWS temp tables Never

LOAD statement Never

Session-level advisory locks Never



Prepared statements

● (Before 1.21.0) need to avoid
● (1.21.0+) Protocol-level prepared statements
● SQL (PREPARE) not supported
● Deallocation

○ PQclosePrepared
○ Check language driver for support



Schema changes

● lock_timeout
● Make ORM set this

○ Ruby on Rails: Strong Migrations gem

● SET lock_timeout = ‘10s’
○ SET is not supported in transaction mode

https://github.com/ankane/strong_migrations


Schema changes

● Most reliable: Connect directly to postgres for DDL

Postgres

pgbouncer

SELECT name
FROM users
WHERE id = 1;

ALTER TABLE foo
ADD COLUMN [...]

5432

6432



Part 2
Monitoring



PgBouncer state machine (conceptual, not literal)

Client connections Server connections

cl_active: 
executing

sv_active

cl_active: 
connected

cl_waiting closed

sv_idle

closed



Connecting to pgbouncer

● Admin console
● psql -p 6432 -U pgbouncer -d pgbouncer

○ Commands: management, or viewing statistics
○ Does not actually allow general SQL

● You can avoid password if:
○ User pgbouncer + DB pgbouncer
○ Connection via socket (not -h localhost or IP)
○ Client user matches user running pgbouncer



SHOW pools;

● Pool = (database, user)
● cl_active
● cl_waiting
● sv_active

pgbouncer=# show pools;
-[ RECORD 1 ]---------+----------
database              | pgbouncer
user                  | pgbouncer
cl_active             | 1
cl_waiting            | 0
cl_active_cancel_req  | 0
cl_waiting_cancel_req | 0
sv_active             | 0
sv_active_cancel      | 0
sv_being_canceled     | 0
sv_idle               | 0
sv_used               | 0
sv_tested             | 0
sv_login              | 0
maxwait               | 0
maxwait_us            | 0
pool_mode             | statement
load_balance_hosts    |



cl_active and cl_waiting

● cl_active includes both:
○ Actively running a query
○ Connected-but-idle, no queries waiting

● cl_waiting
○ Sent a query
○ And: waiting for a server connection

● Want cl_waiting to be 0



sv_active

● Server connections linked to a client
● If it “flatlines” at pool_size, possible issue



SHOW stats;

● SHOW stats_averages;
● avg_query_time + avg_xact_time
● avg_wait_time
● Units: microseconds

database|xact_count|query_count|bytes_received|bytes_sent|xact_time|query_time|wait_time
 app    |     4237 |      4364 |      2353687 |  8524081 |     793 |      694 |       0



avg_query_time + avg_xact_time

● Useful for postgres query performance



avg_query_time + avg_xact_time

● Useful for postgres query performance



So-called “avg_wait_time”

● < 1.23.0: confusing units
○ Number of clients is not in the denominator

● >= 1.23.0: it’s actually the average wait time
● Either way: watch for spikes



SHOW clients;

● Interactive debugging
● psql [...] --csv

pgbouncer=# show clients;
-[ RECORD 1 ]-------+------------------------
type                | C
user                | app
database            | app
replication         | none
state               | active
addr                | unix
port                | 6432
local_addr          | unix
local_port          | 6432
connect_time        | 2025-09-30 13:30:00 EDT
request_time        | 2025-09-30 13:30:05 EDT
wait                | 31
wait_us             | 912710
close_needed        | 0
ptr                 | 0x5db77e850be0
link                | 0x1c38c40
remote_pid          | 403917
tls                 |
application_name    | psql
prepared_statements | 0
id                  | 7

link not null => has server 
connection



PgBouncer process CPU

● PgBouncer is single-threaded
● SHOW stats; does not show CPU util
● top
● pidstat -p $PID 1 1
● If it hits 100%, other metrics start to look confusing



Postgres monitoring - Queries

● Live queries
○ pg_stat_activity
○ idle in transaction count

● Queries over time
○ pg_stat_statements

● Wait events
○ pg_wait_sampling
○ Datadog database monitoring
○ AWS RDS performance insights



Postgres monitoring - PgHero

● Connections
● Live Queries



Part 3
Scaling



PgBouncer struggling, but Postgres is fine?



PgBouncer struggling, but Postgres is fine?

● Wait events - not the same graph



PgBouncer struggling, but Postgres is fine?

● Wait events - not the same graph



PgBouncer struggling, but Postgres is fine?

● Instance CPU util not elevated



PgBouncer struggling, but Postgres is fine?

● pgbouncer CPU at 100%



Signs that you need multiple PgBouncer processes

You will see:

● PgBouncer 100% CPU
● Application sees high end-to-end query times

You might see:

● High avg_query_time and/or avg_wait_time
● High cl_waiting
● Low/stable active sessions on postgres



Multiple PgBouncers: by user

app

worker

HTTP 
requests

background 
jobs

Postgres

Port 6432

Port 6433



Multiple PgBouncers: sharing the same port

● socket = abstraction over network communication, file
● Connection socket

○ remote ip, remote port, local ip, local port, protocol (TCP|UDP)

● Listening socket
○ Bind: (protocol, ip, port) -> process

pgbouncer process

(on all network 
interfaces)

(TCP, 0.0.0.0, 6432)



Multiple PgBouncers: sharing the same port

(normally) If you try to listen on 6432 on another process:

$ pgbouncer /etc/pgbouncer/pgbouncer.ini

FATAL unix socket is in use, cannot continue



Multiple PgBouncers: sharing the same port

● SO_REUSEPORT
● Load balancing from the networking stack

○ Hash of (remote ip, remote port, local ip, local port)
● In the pgbouncer config:

  so_reuseport = 1

● And then run multiple processes with that config



Multiple PgBouncer tips

● Confirm client query times good
● Check connection counts to each
● Check all things that depend on pgbouncer

○ Monitoring
○ High availability solution
○ Upgrade process
○ Sysadmin scripts and playbooks



Summary



Monitor PgBouncer process CPU util

● PgBouncer is single threaded
● CPU at 100% => bottleneck
● Might not be “out of the box” with monitoring solution



Do we need PgBouncer alternatives?

● Managing multiple processes can be a pain
● Transaction mode has limitations
● A lot of pain points have been fixed in recent versions

○ avg_wait_time
○ (protocol) prepared statements
○ max_db_client_connections



Summary

● Monitor pgbouncer process CPU util
○ If pgbouncer hits 100%, run more

● Upgrade
● Be aware of transaction mode limitations

Questions?



Appendix



References

● https://www.heap.io/blog/decrypting-pgbouncers-diagnostic-information
● https://jpcamara.com/2023/04/12/pgbouncer-is-useful.html
● https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgb

ouncers
● https://www.crunchydata.com/blog/prepared-statements-in-transaction-mo

de-for-pgbouncer

https://www.heap.io/blog/decrypting-pgbouncers-diagnostic-information
https://jpcamara.com/2023/04/12/pgbouncer-is-useful.html
https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://www.crunchydata.com/blog/prepared-statements-in-transaction-mode-for-pgbouncer
https://www.crunchydata.com/blog/prepared-statements-in-transaction-mode-for-pgbouncer


Image credits

● https://en.wikipedia.org/wiki/File:Rhinovirus_isosurface.png CC BY-SA
○ Author: Thomas Splettstoesser

● https://en.wikipedia.org/wiki/File:DNA_replication_split.svg CC0
○ Author: Madprime

https://en.wikipedia.org/wiki/File:Rhinovirus_isosurface.png
https://commons.wikimedia.org/wiki/User:Splette
https://en.wikipedia.org/wiki/File:DNA_replication_split.svg
https://commons.wikimedia.org/wiki/User:Madprime


Schema changes - other approach

In theory: Transactions + SET LOCAL

● Still doesn’t help with CREATE INDEX CONCURRENTLY
● Your ORM probably does not support this

Postgres
pgbouncer

BEGIN;
SET LOCAL lock_timeout = ‘10s’;
ALTER TABLE foo ADD COLUMN [...]
COMMIT;


